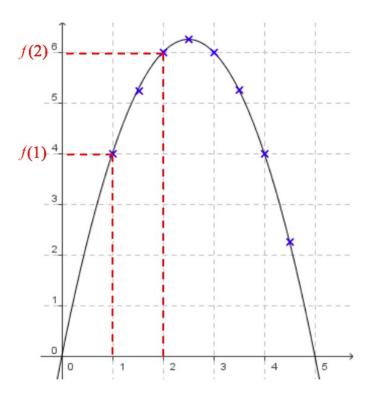
Variations d'une fonction

Exemple

On a représenté ci-dessous dans un repère la fonction f définie par $f(x)=5x-x^2$.



Pour des valeurs croissantes choisies pour x dans l'intervalle [0; 2,5], les valeurs de f sont également croissantes.

Par exemple: 1 < 2 et f(1) < f(2).

Pour des valeurs croissantes choisies pour *x* dans l'intervalle [2,5 ; 5], les valeurs de *f* sont décroissantes.

Par exemple: 3 < 4 et f(3) > f(4).

On dit que la fonction f est croissante sur l'intervalle [0; 2,5] et décroissante sur l'intervalle [2,5; 5].

Définitions

Soit *f* une fonction définie sur un intervalle I.

Dire que f est croissante sur l signifie que pour tous réels a et b de l:

si a < b alors $f(a) \le f(b)$

Dire que f est décroissante sur I signifie que pour tous réels a et b de I:

si a < b alors $f(a) \ge f(b)$

Dire que f est constante sur l signifie que pour tous réels a et b de l: f(a)=f(b)

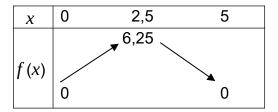
Dire que f est monotone sur l signifie que f est soit croissante sur l, soit décroissante sur l.

Tableau de variations

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone.

Exemple

On reprend la fonction f définie dans l'exemple précédent La fonction f est croissante sur l'intervalle [0; 2,5] et décroissante sur l'intervalle [2,5; 5]. f(0) = 0 f(2,5) = 6,25 f(5) = 0



Variations des fonctions de référence

Fonctions affines et fonctions linéaires

Une fonction affine f est définie sur \mathbb{R} par f(x)=ax+b, où a et b sont deux nombres réels. Lorsque b=0, la fonction f définie par f(x)=ax est une fonction linéaire.

Exemples

La fonction f définie sur \mathbb{R} par f(x) = -x + 4 est une fonction affine.

La fonction g définie sur \mathbb{R} par $g(x) = \frac{-2}{3}x$ est une fonction linéaire.

Propriété

Soit *f* une fonction affine définie sur \mathbb{R} par f(x) = ax + b.

Si a>0, alors f est croissante sur \mathbb{R} .

Si a < 0, alors f est décroissante sur \mathbb{R} .

Si a=0, alors f est constante sur \mathbb{R} .

Représentation graphique

La représentation graphique d'une fonction affine est une droite qui n'est pas parallèle à l'axe des ordonnées.

Dans le cas d'une fonction linéaire, il s'agit d'une droite passant par l'origine du repère. Dans le cas d'une fonction constante, il s'agit d'une droite parallèle à l'axe des abscisses.

Exemple

Pour la fonction f définie sur \mathbb{R} par f(x) = ax + b

a est coefficient directeur et b est l'ordonnée à l'origine de la droite représentative.

Pour (d): Le coefficient directeur est 2

L'ordonnée à l'origine est -3

La fonction f représentée par la droite (d) est définie par f(x) = 2x - 3

Pour (d'): Le coefficient directeur est -4

L'ordonnée à l'origine est -1

La fonction g représentée par la droite (d') est définie par g(x) = -4x - 1

<u>Propriété</u>

Si A(x_A ; y_A) et B(x_B ; y_B) sont deux points distincts de la droite (d) représentant la fonction f définie sur \mathbb{R} par f(x) = ax + b alors

$$a = \frac{y_B - y_A}{x_B - x_A}.$$

Méthode: Déterminer l'expression d'une fonction affine

Déterminer par calcul une expression de la fonction f telle que f(-2) = 4 et f(3) = 1.

La représentation graphique correspondant à la fonction affine f passe donc par les points A(-2;4) et B(3;1).

$$a = \frac{y_B - y_A}{x_B - x_A}$$

$$a = \frac{1-4}{3-(-2)} = -\frac{3}{5}$$

Donc :
$$f(x) = -\frac{3}{5}x + b$$
.

Comme A est un point de la droite, on a: f(-2) = 4, donc: $4 = -\frac{3}{5}(-2) + b$ donc $b = \frac{14}{5}$.

$$4 = -\frac{3}{5}(-2) + b$$
 donc $b = \frac{14}{5}$.

D'où:
$$f(x) = -\frac{3}{5}x + \frac{14}{5}$$
.

Variations de la fonction carré

La fonction carré f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur l'intervalle $[0;+\infty[$.

Variations de la fonction inverse

La fonction inverse est décroissante sur l'intervalle $[-\infty;0]$ et décroissante sur l'intervalle $[0;+\infty]$.

Variations de la fonction racine carrée

La fonction racine carrée est strictement croissante sur l'intervalle $[0;+\infty[$.

Variations de la fonction cube

La fonction cube est strictement croissante sur IR.

Extremum d'une fonction

Définitions

Soit f une fonction de l'intervalle I. a et b deux nombres réels de I.

Dire que f admet un maximum M en a de l'signifie que pour tout nombre réel x de l'intervalle I, $f(x) \le M = f(a)$

Dire que f admet un minimum m en b de l'signifie que pour tout nombre réel x de l'intervalle I, $f(x) \ge m = f(b)$

Exemple

Soit la fonction f définie par: $f(x) = (x - 3)^2 + 4$ La fonction f admet un minimum en 3 qui vaut 4